

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7017–7019

Metal triflate catalyzed highly regio- and stereoselective 1,2-bromoazidation of alkenes using NBS and TMSN₃ as the bromine and azide sources

Saumen Hajra,* Debarshi Sinha and Manishabrata Bhowmick

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

Received 27 June 2006; revised 13 July 2006; accepted 21 July 2006 Available online 10 August 2006

Abstract—Metal triflate catalyzed 1,2-bromoazidation of alkenes was performed using *N*-bromosuccinimide (NBS) and trimethylsilyl azide (TMSN₃) as the bromine and azide sources, respectively. Among the metal triflates, $Zn(OTf)_2$ was found to be the best catalyst. This catalytic process represents a highly regioselective, stereoselective and high yielding method for the synthesis of *anti*-1,2-bromoazides from a variety of alkenes including α , β -unsaturated carbonyl compounds. © 2006 Elsevier Ltd. All rights reserved.

1,2-Functionalization of alkenes with azide and halogens (haloazidation) represents an important transformation in organic synthesis. These vicinal haloazide compounds are versatile precursors of vinyl azides,¹ amines,² heterocycles³ and particularly aziridines.⁴ The study of highly regioselective and stereoselective haloazidation of alkenes still remains an important and challenging task for organic chemists.

In the literature, vicinal 1,2-iodoazides are prepared by addition of I₂/AgN₃,⁵ ICl/NaN₃,⁶ PhI(OAc)₂/Et₄NX/TMSN₃,⁷ CAN/NaI/NaN₃,⁸ IPy₂BF₄/TMSN₃⁹ and Oxone/wet-Al₂O₃/KI/NaN₃¹⁰ onto the alkenes, mostly under noncatalytic conditions. Poor *anti/syn*-selectivity is a significant limitation of these processes. The instability of these iodo-compounds is an additional problem.

1,2-Bromoazidation of alkenes was first reported by Hassner and Boerwinkle¹¹ by the addition of bromine azide generated from bromine and sodium azide, which required the use of excess hydrazoic acid to suppress the formation of dibromo compounds. Krief⁴ described the bromoazidation of alkenes by in situ generated bromine azide from NBS and NaN₃ in aqueous solution. Hydrolysis is the major problem in this reaction. Later, Olah et al.¹² reported the bromoazidation of 1,2-disubstituted- and trisubstituted alkenes with NBS and $TMSN_3$ catalyzed by superacidic Nafion-H

Scheme 1.

Table 1. Screening of metal triflates as catalysts for the bromoazidation of 1a with NBS and TMSN₃

	M(OTf) _n (5 mol% TMSN ₃ (), NBS (1.2 1.5 equiv)	equiv)	N ₃	Br		
	CH ₂ CI	₂ , 0 °C		Br	+ Br		
1a			(±)-	2a	(±)- 3a		
Entry	ML_n	<i>t</i> (h)	2a:3a ^a	Yield	of 2a ^b (%)		
1	None	12	50:50	30			
2	La(OTf)3	6	>95:5	74			
3	$Y(OTf)_3$	4	>95:5	55			
4	Yb(OTf) ₃	2	>95:5	45			
5	$Sm(OTf)_3$	10 min	>95:5	65			
6	Cu(OTf) ₂	10 min	Mixture	of produ	ucts		
7	$Zn(OTf)_2$	10 min	>95:5	85			

^a Ratio determined from the ¹H NMR spectrum of the crude reaction mixture.

^b Isolated yields of pure **2a** after column chromatography.

Keywords: Metal triflate; Catalyst; Bromoazidation; *N*-Bromosuccinimide (NBS); Trimethylsilyl azide (TMSN₃); Alkenes; α , β -Unsaturated carbonyl compounds; *anti*-1,2-Bromoazides.

^{*}Corresponding author. Tel.: +91 3222 283340; fax: +91 3222 255303; e-mail: shajra@chem.iitkgp.ernet.in

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.110

resin, however, there was no reaction with terminal alkenes. In this letter, we report a highly regio- and stereoselective bromoazidation of various alkenes catalyzed by metal triflates with NBS and TMSN₃ as the bromine and azide sources, respectively (Scheme 1).

Our continued efforts¹³ to provide new catalytic methods for the regio- and stereoselective 1,2-halofunctionalization of alkenes led us to anticipate that a suitable Lewis acid might catalyze the 1,2-haloazidation of alkenes with NBS and TMSN₃. We screened different Lewis acid as catalysts, in particular metal triflates, and styrene **1a** was selected as a model substrate (Table 1). Among the metal triflates studied, $Zn(OTf)_2$ was found to be the best catalyst with $Sm(OTf)_3$ being comparable. It should be noted that in the absence of Lewis acid, **1a** re-

Table 2. Zn(OTf)₂ catalyzed bromoazidation of alkenes with NBS and TMSN₃

Entry		Alkene	t (min)		Product	Anti:syn	Yield ^a (%)
1	1b	MeO	10	(±)-2b	MeO Br	_	72
2	1c		30	(±)- 2 c	N ₃ ,Br	>99:1	85
3	1d	\bigcirc	30	(\pm) -2d ^b	N ₃	>99:1	80
4	1e	Ph	60	(±) -2e	Ph Br	>99:1	92°
5	1f	MeO	20	(±) -2f	Meo Br	>99:1	75
6	1g	MeO OMe	20	(±)-2g	MeO OMe	>99:1	70

^a Isolated yields of pure 2 after column chromatography.

^b Ref. 7.

^c Combined isolated yield of 2e and 30% of the dibromo compound which could not be separated.

Table 3.	Zn(OTf) ₂	catalyzed	bromoazidation	of α . β	-unsaturated	carbonvl	compoi	unds with	NBS and 7	ΓMSN ₂

 a Isolated yields of the $\alpha\mbox{-bromo-}\beta\mbox{-azido}$ carbonyl compounds 2 after column chromatography.

 $^{\rm b}$ 55% of starting chalcone 1h was recovered.

^c 28% of starting methyl cinnamate 1i was recovered.

acts very slowly with NBS and TMSN₃ and after 12 h, a 1:1 mixture of bromoazide **2a** and dibromide **3a** was obtained in poor yield (Table 1, entry 1). When substrate **1a** was treated with 0.05 equiv of $Zn(OTf)_2$, 1.2 equiv of NBS and 1.5 equiv of TMSN₃ in CH₂Cl₂ at 0 °C for 10 min, bromoazide **2a** was obtained regioselectively in 85% yield (entry 7).

Various alkenes were subjected to the catalytic bromoazidation reaction (Table 2).^{14,15} In all the cases, the reactions were *anti*-selective as revealed by the ¹H NMR of the crude products.

 α,β -Unsaturated carbonyl compounds represent a synthetically useful class of substrates for various alkene oxidative reactions. In particular, bromoazidation of α,β -unsaturated carbonyl compounds would provide functionalized azidobrominated compounds, which could be transformed into various useful organic compounds by replacing the bromine atom with a series of nucleophiles and where the azido functionality would serve as a protected amino group. However, haloazidation of α, β -unsaturated carbonyl compounds has been poorly investigated. When chalcones and cinnamates were subjected to the Zn(OTf)₂ catalyzed bromoazidation reaction with NBS and TMSN₃ at 45 °C, anti-αbromo- β -azido carbonyl compounds were obtained with moderate to good yields (Table 3).^{16,17} At 0 °C or rt, the bromoazidation reaction of α , β -unsaturated carbonyl compounds was found to be very slow.

In conclusion, we have developed a new metal triflate catalyzed 1,2-bromoazidation of alkenes using NBS and TMSN₃ as the bromine and azide sources, respectively. $Zn(OTf)_2$ was found be the best catalyst. This catalytic method provides stereoselectively *anti*-1,2-azidobrominated products from a variety of alkenes including α , β -unsaturated carbonyl compounds.

Acknowledgements

We thank DST (Project No. SR/S1/OC-13/2004), New Delhi, for providing financial support. D.S. and M.B. thank CSIR, New Delhi, and IIT, Kharagpur, respectively, for their fellowships.

References and notes

- Hassner, A.; Fowler, F. W. J. Org. Chem. 1968, 33, 2686– 2691.
- Wasserman, H. H.; Brunner, R. K.; Buynak, J. D.; Carter, C. G.; Oku, T.; Robinson, R. P. J. Am. Chem. Soc. 1985, 107, 519–521.
- For the synthesis of tetrazoles via Hassner-Ritter reaction: (a) Ranganathan, S.; Ranganathan, D.; Mehrotra, A. K. *Tetrahedron Lett.* 1973, 14, 2265–2268; (b) Moorthy, S. N.; Devaprabakara, D. *Tetrahedron Lett.* 1975, 16, 257– 260.
- (a) Van Ende, D.; Krief, A. Angew. Chem., Int. Ed. Engl. 1974, 13, 279–280; (b) Denis, J. N.; Krief, A. Tetrahedron 1979, 35, 2901–2903.
- 5. Hantzsch, A.; Schümann, M. Ber. Dtsch. Chem. Ges. 1900, 33, 522.

- (a) Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1965, 87, 4203–4204; (b) Fowler, F. W.; Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1967, 89, 2077–2082.
- Kirschning, A.; Hashem, Md. A.; Monenschein, H.; Rose, L.; Schöning, K.-U. J. Org. Chem. 1999, 64, 6522– 6526.
- Nair, V.; George, T. G.; Sheeba, V.; Augustine, A.; Balagopal, L.; Nair, L. G. Synlett 2000, 1597–1598.
- Barluenga, J.; Alvarez-Perez, M.; Fananas, F. J.; Gonzales, J. M. Adv. Synth. Catal. 2001, 343, 335–337.
- Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Tetrahedron Lett. 2002, 43, 1201.
- (a) Hassner, A.; Boerwinkle, F. J. Am. Chem. Soc. 1968, 90, 216–218; (b) Boerwinkle, F.; Hassner, A. Tetrahedron Lett. 1968, 3921–3924; (c) Hassner, A.; Boerwinkle, F. Tetrahedron Lett. 1969, 3309–3312.
- 12. Olah, G. O.; Wang, Q.; Li, X.-Y.; Prakash, G. K. S. Synlett 1990, 487-489.
- (a) Hajra, S.; Bhowmick, M.; Karmakar, A. *Tetrahedron* Lett. 2005, 46, 3073–3077; (b) Hajra, S.; Maji, B.; Karmakar, A. *Tetrahedron Lett.* 2005, 46, 8599–8603.
- 14. General procedure: To a well stirred suspension of substrate 1 (0.50 mmol) and 4 Å MS (0.100 g) in dry CH_2Cl_2 (2.5 mL) was added $Zn(OTf)_2$ (0.009 g, 0.025 mmol) under argon. The reaction mixture was cooled to 0 °C. TMSN₃ (0.1 mL, 0.75 mmol) and NBS (0.107 g, 0.60 mmol) were successively added. On completion (TLC), the reaction was quenched with aqueous saturated NaHCO₃ solution and extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layer was washed with water, dried over Na₂SO₄ and concentrated under vacuum. The bromoazide product was purified by flash column chromatography using petroleum ether–EtOAc as an eluent.
- 15. All the compounds listed in Table 2 were characterized by ¹H NMR, ¹³C NMR and FT-IR spectroscopy. Spectral data of compound (±)-2d were compared with the literature data.⁷
 Representative spectral data of bromoazide (±)-2c: Oily liquid; IR (CHCl₃, cm⁻¹): 2101 (N₃); ¹H NMR (200 MHz, CDCl₃): δ 2.11–2.30 (m, 1H), 2.35–2.55 (m, 1H), 2.80–3.20 (m, 2H), 4.42–4.51 (m, 1H), 4.74 (d, J = 4.5 Hz, 1H), 7.10–7.38 (m, 4H); ¹³C NMR (50 MHz, CDCl₃): δ 25.9, 27.8, 50.3, 65.1, 126.6, 128.7,
- 129.1, 129.7, 130.5, 135.3.
 16. General procedure for chalcones and cinnamates: To a well stirred suspension of chalcone or cinnamate 1 (0.50 mmol) and 4 Å MS (0.100 g) in dry CH₂Cl₂ (2.5 mL) were successively added Zn(OTf)₂ (0.009 g, 0.025 mmol), TMSN₃ (0.1 mL, 0.75 mmol) and NBS (0.107 g, 0.60 mmol) under argon. The reaction mixture was heated (45 °C) under reflux. The reaction was monitored by TLC and upon completion was quenched with saturated aqueous NaHCO₃ solution and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic layer was washed with water, dried over Na₂SO₄ and concentrated under vacuum. The bromoazide product was purified by flash column chromatography using petroleum ether-EtOAc as an eluent.
- 17. All the compounds listed in Table 3 were characterized by ¹H NMR, ¹³C NMR and FT-IR spectroscopy. Representative spectral data of α-bromo-β-azido carbonyl compound (±)-**2j**: Gummy liquid; IR (CHCl₃, cm⁻¹): 2108 (N₃), 1745 (CO); ¹H NMR (200 MHz, CDCl₃): δ 3.83 (s, 3H), 3.87 (s, 3H), 4.27 (d, J = 10.7 Hz, 1H), 4.91 (d, J = 10.7 Hz, 1H), 6.94 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 46.0, 53.2, 55.1, 66.7, 114.1 (2C), 126.9, 129.1 (2C), 160.2, 168.5.