

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 7017–7019

Metal triflate catalyzed highly regio- and stereoselective 1,2-bromoazidation of alkenes using NBS and $TMSN₃$ as the bromine and azide sources

Saumen Hajra,* Debarshi Sinha and Manishabrata Bhowmick

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

Received 27 June 2006; revised 13 July 2006; accepted 21 July 2006 Available online 10 August 2006

Abstract—Metal triflate catalyzed 1,2-bromoazidation of alkenes was performed using N-bromosuccinimide (NBS) and trimethylsilyl azide (TMSN₃) as the bromine and azide sources, respectively. Among the metal triflates, $Zn(OTf)$ ₂ was found to be the best catalyst. This catalytic process represents a highly regioselective, stereoselective and high yielding method for the synthesis of anti-1,2-bromoazides from a variety of alkenes including α , β -unsaturated carbonyl compounds. © 2006 Elsevier Ltd. All rights reserved.

1,2-Functionalization of alkenes with azide and halogens (haloazidation) represents an important transformation in organic synthesis. These vicinal haloazide compounds are versatile precursors of vinyl azides,^{[1](#page-2-0)} amines,^{[2](#page-2-0)} heterocycles^{[3](#page-2-0)} and particularly aziridines.^{[4](#page-2-0)} The study of highly regioselective and stereoselective haloazidation of alkenes still remains an important and challenging task for organic chemists.

In the literature, vicinal 1,2-iodoazides are prepared by addition of I_2/AgN_3 ^{[5](#page-2-0)} ICl/NaN₃,^{[6](#page-2-0)} PhI(OAc)₂/Et₄NX/ $TMSN_3$,^{[7](#page-2-0)} CAN/NaI/NaN₃,^{[8](#page-2-0)} IPy₂BF₄/TMSN₃^{[9](#page-2-0)} and Oxone/wet-Al₂O₃/KI/NaN₃^{[10](#page-2-0)} onto the alkenes, mostly under noncatalytic conditions. Poor anti/syn-selectivity is a significant limitation of these processes. The instability of these iodo-compounds is an additional problem.

1,2-Bromoazidation of alkenes was first reported by Hassner and Boerwinkle^{[11](#page-2-0)} by the addition of bromine azide generated from bromine and sodium azide, which required the use of excess hydrazoic acid to suppress the formation of dibromo compounds. Krief^{[4](#page-2-0)} described the bromoazidation of alkenes by in situ generated bromine azide from NBS and $NaN₃$ in aqueous solution. Hydrolysis is the major problem in this reaction. Later, Olah et al. 12 reported the bromoazidation of 1,2-disubstituted- and trisubstituted alkenes with NBS and $TMSN₃$ catalyzed by superacidic Nafion-H

Scheme 1.

Table 1. Screening of metal triflates as catalysts for the bromoazidation of $1a$ with NBS and TMSN₃

 A^a Ratio determined from the ${}^{1}H$ NMR spectrum of the crude reaction mixture.

^b Isolated yields of pure 2a after column chromatography.

Keywords: Metal triflate; Catalyst; Bromoazidation; N-Bromosuccinimide (NBS); Trimethylsilyl azide (TMSN₃); Alkenes; α , β -Unsaturated carbonyl compounds; anti-1,2-Bromoazides.

^{*} Corresponding author. Tel.: +91 3222 283340; fax: +91 3222 255303; e-mail: shajra@chem.iitkgp.ernet.in

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.07.110

resin, however, there was no reaction with terminal alkenes. In this letter, we report a highly regio- and stereoselective bromoazidation of various alkenes catalyzed by metal triflates with NBS and $TMSN₃$ as the bromine and azide sources, respectively ([Scheme 1](#page-0-0)).

Our continued efforts^{[13](#page-2-0)} to provide new catalytic methods for the regio- and stereoselective 1,2-halofunctionalization of alkenes led us to anticipate that a suitable Lewis acid might catalyze the 1,2-haloazidation of alkenes with NBS and TMSN₃. We screened different Lewis acid as catalysts, in particular metal triflates, and styrene 1a was selected as a model substrate ([Table 1](#page-0-0)). Among the metal triflates studied, $Zn(OTf)_2$ was found to be the best catalyst with $Sm(OTf)$ ₃ being comparable. It should be noted that in the absence of Lewis acid, 1a re-

Table 2. $Zn(OTf)$ ₂ catalyzed bromoazidation of alkenes with NBS and TMSN₃

Entry	$\overline{}$	Alkene	t (min)		$\overline{ }$ Product	Anti:syn	Yield ^a $(\%$
$\mathbf{1}$	1 _b	MeO [®]	$10\,$	(\pm) -2b	N_3 \angle Br MeO		$72\,$
\overline{c}	$1\mathrm{c}$		$30\,$	(\pm) -2c	N_3 ∴.Br	>99:1	$85\,$
3	${\bf 1d}$		$30\,$	(\pm) -2d $^{\rm b}$	N_3 ™Br	>99:1	$80\,$
4	${\bf 1e}$	$Ph \sim$ ^{Ph}	60	$(\pm)\mbox{-}2e$	N_3 Ph, Ph ⁻ $\bar{\tilde{\mathsf{B}}}$ r	>99:1	92°
5	${\bf 1f}$	MeO [®]	$20\,$	$(\pm)\text{-}2\mathbf{f}$	N_3 $\bar{\bar{\mathsf{B}}}$ r MeO	>99:1	$75\,$
6	$1\mathrm{g}$	MeO [®] OMe	$20\,$	(\pm) -2g	N_3 $\dot{\bar{\bar{\mathsf{B}}}}$ r MeO OMe	>99:1	$70\,$

a Isolated yields of pure 2 after column chromatography.

^b Ref. [7](#page-2-0).

^c Combined isolated yield of 2e and 30% of the dibromo compound which could not be separated.

a Isolated yields of the α -bromo- β -azido carbonyl compounds 2 after column chromatography.
b 55% of starting chalcone 1h was recovered.
c 28% of starting methyl cinnamate 1i was recovered.

acts very slowly with NBS and $TMSN₃$ and after 12 h, a 1:1 mixture of bromoazide 2a and dibromide 3a was obtained in poor yield [\(Table 1,](#page-0-0) entry 1). When substrate 1a was treated with 0.05 equiv of $Zn(OTf)_{2}$, 1.2 equiv of NBS and 1.5 equiv of TMSN₃ in CH₂Cl₂ at 0° C for 10 min, bromoazide 2a was obtained regioselectively in 85% yield (entry 7).

Various alkenes were subjected to the catalytic bromo-azidation reaction ([Table 2\)](#page-1-0).^{14,15} In all the cases, the reactions were *anti*-selective as revealed by the ${}^{1}H$ NMR of the crude products.

 α, β -Unsaturated carbonyl compounds represent a synthetically useful class of substrates for various alkene oxidative reactions. In particular, bromoazidation of α , β -unsaturated carbonyl compounds would provide functionalized azidobrominated compounds, which could be transformed into various useful organic compounds by replacing the bromine atom with a series of nucleophiles and where the azido functionality would serve as a protected amino group. However, haloazidation of α , β -unsaturated carbonyl compounds has been poorly investigated. When chalcones and cinnamates were subjected to the $Zn(OTf)$ ₂ catalyzed bromoazidation reaction with NBS and TMSN₃ at 45 °C, *anti*- α bromo-b-azido carbonyl compounds were obtained with moderate to good yields [\(Table 3](#page-1-0)).^{16,17} At 0° C or rt, the bromoazidation reaction of α , β -unsaturated carbonyl compounds was found to be very slow.

In conclusion, we have developed a new metal triflate catalyzed 1,2-bromoazidation of alkenes using NBS and $TMSN₃$ as the bromine and azide sources, respectively. $Zn(OTf)_2$ was found be the best catalyst. This catalytic method provides stereoselectively anti-1,2 azidobrominated products from a variety of alkenes including α , β -unsaturated carbonyl compounds.

Acknowledgements

We thank DST (Project No. SR/S1/OC-13/2004), New Delhi, for providing financial support. D.S. and M.B. thank CSIR, New Delhi, and IIT, Kharagpur, respectively, for their fellowships.

References and notes

- 1. Hassner, A.; Fowler, F. W. J. Org. Chem. 1968, 33, 2686– 2691.
- 2. Wasserman, H. H.; Brunner, R. K.; Buynak, J. D.; Carter, C. G.; Oku, T.; Robinson, R. P. J. Am. Chem. Soc. 1985, 107, 519–521.
- 3. For the synthesis of tetrazoles via Hassner–Ritter reaction: (a) Ranganathan, S.; Ranganathan, D.; Mehrotra, A. K. Tetrahedron Lett. 1973, 14, 2265–2268; (b) Moorthy, S. N.; Devaprabakara, D. Tetrahedron Lett. 1975, 16, 257– 260.
- 4. (a) Van Ende, D.; Krief, A. Angew. Chem., Int. Ed. Engl. 1974, 13, 279–280; (b) Denis, J. N.; Krief, A. Tetrahedron 1979, 35, 2901–2903.
- 5. Hantzsch, A.; Schümann, M. Ber. Dtsch. Chem. Ges. 1900, 33, 522.
- 6. (a) Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1965, 87, 4203–4204; (b) Fowler, F. W.; Hassner, A.; Levy, L. A. J. Am. Chem. Soc. 1967, 89, 2077–2082.
- 7. Kirschning, A.; Hashem, Md. A.; Monenschein, H.; Rose, L.; Schöning, K.-U. J. Org. Chem. 1999, 64, 6522– 6526.
- 8. Nair, V.; George, T. G.; Sheeba, V.; Augustine, A.; Balagopal, L.; Nair, L. G. Synlett 2000, 1597–1598.
- 9. Barluenga, J.; Alvarez-Perez, M.; Fananas, F. J.; Gonzales, J. M. Adv. Synth. Catal. 2001, 343, 335–337.
- 10. Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O. Tetrahedron Lett. 2002, 43, 1201.
- 11. (a) Hassner, A.; Boerwinkle, F. J. Am. Chem. Soc. 1968, 90, 216–218; (b) Boerwinkle, F.; Hassner, A. Tetrahedron Lett. 1968, 3921–3924; (c) Hassner, A.; Boerwinkle, F. Tetrahedron Lett. 1969, 3309–3312.
- 12. Olah, G. O.; Wang, Q.; Li, X.-Y.; Prakash, G. K. S. Synlett 1990, 487–489.
- 13. (a) Hajra, S.; Bhowmick, M.; Karmakar, A. Tetrahedron Lett. **2005**, 46, 3073-3077; (b) Hajra, S.; Maji, B.; Karmakar, A. Tetrahedron Lett. 2005, 46, 8599–8603.
- 14. General procedure: To a well stirred suspension of substrate 1 (0.50 mmol) and 4 Å MS (0.100 g) in dry CH_2Cl_2 (2.5 mL) was added $Zn(OTf)_2$ (0.009 g, 0.025 mmol) under argon. The reaction mixture was cooled to 0° C. TMSN₃ (0.1 mL, 0.75 mmol) and NBS (0.107 g, 0.60 mmol) were successively added. On completion (TLC), the reaction was quenched with aqueous saturated NaHCO₃ solution and extracted with CH_2Cl_2 $(3 \times 30 \text{ mL})$. The combined organic layer was washed with water, dried over $Na₂SO₄$ and concentrated under vacuum. The bromoazide product was purified by flash column chromatography using petroleum ether–EtOAc as an eluent.
- 15. All the compounds listed in [Table 2](#page-1-0) were characterized by $\rm{^{1}H NMR}$, $\rm{^{13}C NMR}$ and FT-IR spectroscopy. Spectral data of compound (\pm) -2d were compared with the literature data.⁷ Representative spectral data of bromoazide (\pm) -2c: Oily liquid; IR (CHCl₃, cm⁻¹): 2101 (N₃); ¹H NMR $(200 \text{ MHz}, \text{ CDCl}_3): \delta$ 2.11–2.30 (m, 1H), 2.35–2.55

(m, 1H), 2.80–3.20 (m, 2H), 4.42–4.51 (m, 1H), 4.74
(d, $J = 4.5$ Hz, 1H), 7.10–7.38 (m, 4H); ¹³C NMR (50 MHz, CDCl3): d 25.9, 27.8, 50.3, 65.1, 126.6, 128.7, 129.1, 129.7, 130.5, 135.3.

- 16. General procedure for chalcones and cinnamates: To a well stirred suspension of chalcone or cinnamate 1 (0.50 mmol) and 4 Å MS (0.100 g) in dry CH_2Cl_2 (2.5 mL) were successively added $\text{Zn}(\text{OTf})_2$ (0.009 g) , 0.025 mmol), $TMSN_3$ (0.1 mL, 0.75 mmol) and NBS (0.107 g, 0.60 mmol) under argon. The reaction mixture was heated $(45 \degree C)$ under reflux. The reaction was monitored by TLC and upon completion was quenched with saturated aqueous $NaHCO₃$ solution and extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layer was washed with water, dried over $Na₂SO₄$ and concentrated under vacuum. The bromoazide product was purified by flash column chromatography using petroleum ether– EtOAc as an eluent.
- 17. All the compounds listed in [Table 3](#page-1-0) were characterized by ¹ ¹H NMR, ¹³C NMR and FT-IR spectroscopy. Representative spectral data of a-bromo-b-azido carbonyl compound (\pm) -2**j**: Gummy liquid; IR (CHCl₃, cm⁻¹): 2108 (N_3) , 1745 (CO); ¹H NMR (200 MHz, CDCl₃): δ 3.83 (s, 3H), 3.87 (s, 3H), 4.27 (d, $J = 10.7$ Hz, 1H), 4.91 (d, $J = 10.7$ Hz, 1H), 6.94 (d, $J = 8.5$ Hz, 2H), 7.27 (d, $J = 8.6$ Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 46.0, 53.2, 55.1, 66.7, 114.1 (2C), 126.9, 129.1 (2C), 160.2, 168.5.